

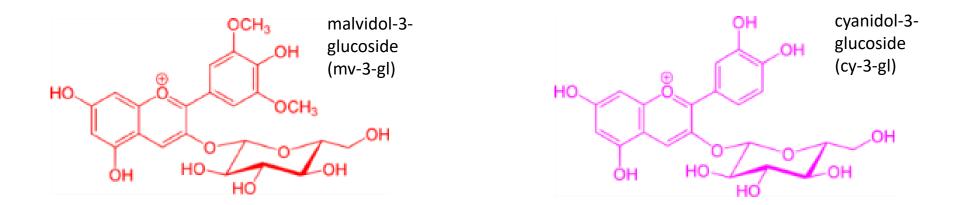
Bundesinstitut für Risikobewertung

Chromatographic methods for wine authentication

Carsten Fauhl-Hassek

Chromatographic methods

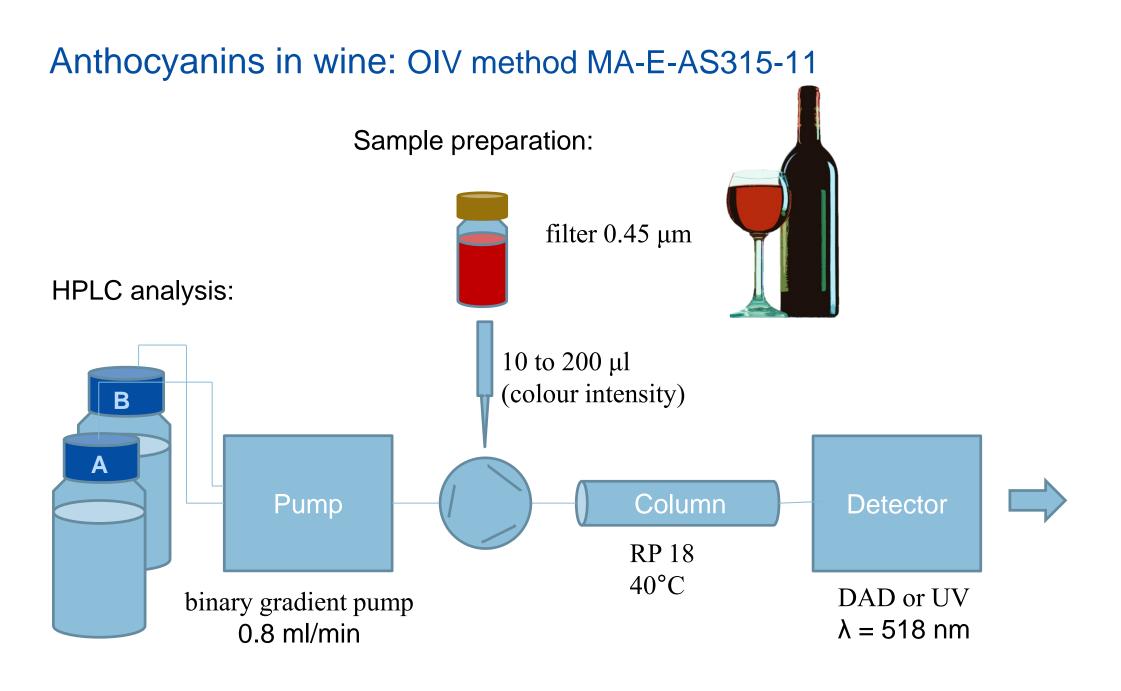
• Quick review:


Based on the distribution of molecules between two phases: Mixtures of analytes are dissolved in a mobile phase and passed through a system coated or filled with a stationary phase. Separation occurs due to different strengths of interaction of the various molecules with the surface of the stationary phase.

- GC, LC with various detectors (FID, UV, MS/MS ...)
- Numerous methods in wine (authentication) analysis (see OIV compendium).
- 2 Examples:
 - Anthocyanins (HPLC/UV) → Grape variety (red and rosé wines)
 - Cyclic diglycerols & 3-MPD (GC/MS) → Glycerol adulteration

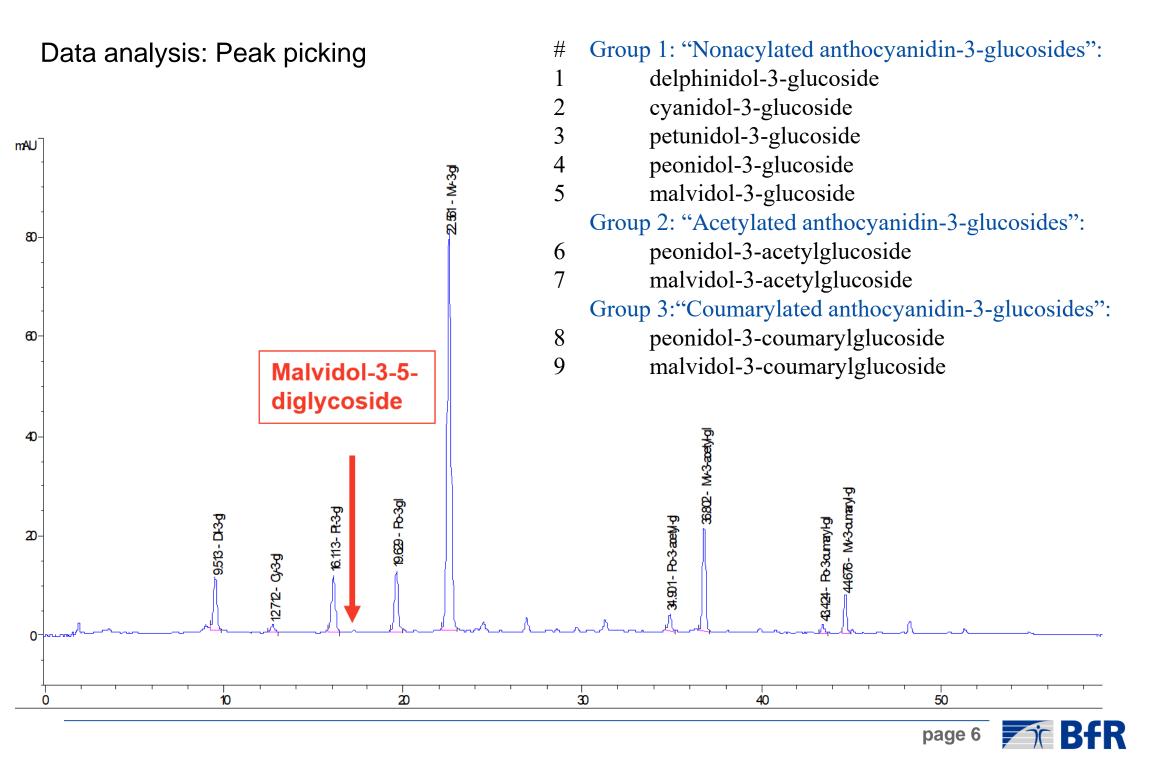
Anthocyanins in wine

- Phenolic compounds common in fruits and berries
- Antioxidants, give colour to red and rosé wines
- Glucosides (mostly in C3 position). Aglycons are instable in solution
- Also acylated forms (acetylated, coumarylated)
- Anthocyanin composition ± typical for grape variety



Anthocyanins in wine: OIV method MA-E-AS315-11

Principle:


- Separation of the five most important non acylated anthocyanins and four major acylated anthocyanins
- Analysis of red and rosé wine by direct separation by HPLC by using reverse phase column with gradient elution by water/formic acid/acetonitrile with detection at 518 nm

Solvent A: Water/Formic acid/Acetonitrile 87 : 10 : 3 (v/v/v) Solvent B: Water/Formic acid/Acetonitrile 40 : 10 : 50 (v/v/v)

Anthocyanins in wine: OIV method MA-E-AS315-11

Anthocyanins in wine: OIV method MA-E-AS315-11

Data analysis: Calculations

- Values are expressed as relative amounts of the sum of the nine anthocyanins in area % : Anthocyanin pattern
- sum of acylated anthocyanins and the ratio of acetylated to coumarylated anthocyanins are calculated if feasible

Ratio acetylated / coumarylated anthocyanins:

$$R = \frac{(6+7)}{(8+9)}$$

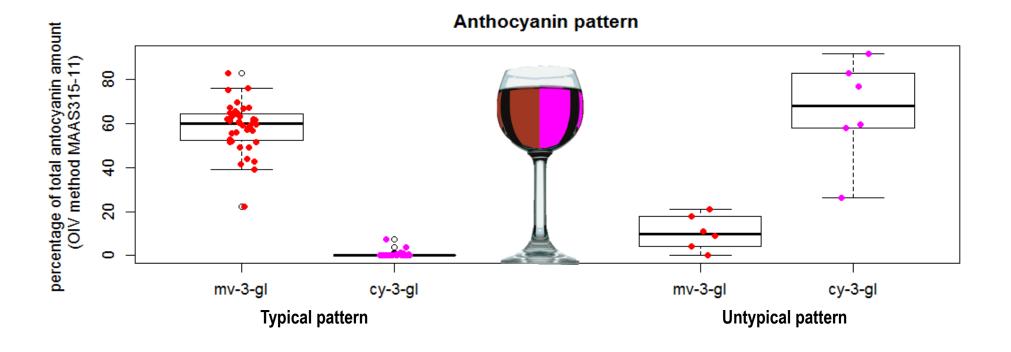
Anthocyanins in wine: Examples

Example 1: Pinot false variety claim

• Pinot Noir, Pinot Meunier, and Pinot Madeleine wines do not contain acetylated anthocyanins

 \rightarrow Limitations: legal blends (EU wine law: other varieties allowed <15 %*)

*Commission Delegated Regulation (EU) 2019/33



Anthocyanins in wine: Examples

Example 2: Although anthocyanins were largely degraded (no clear pattern): detection of non-*Vitis vinifera* anthocyanin origin

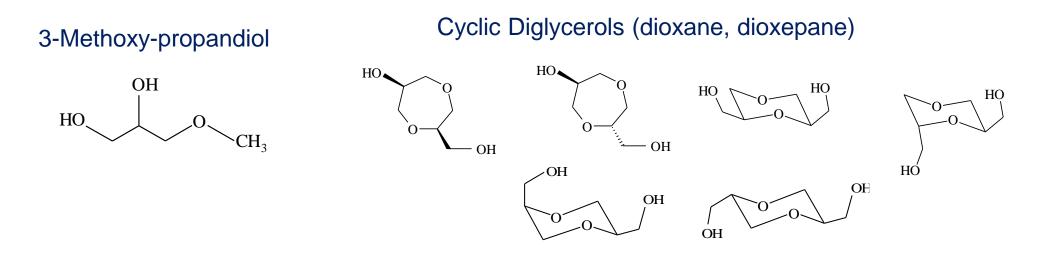
- Aging processes (oxidation, degradation, polymerisation): Less free or acylated anthocyanins over time, increasingly brownish in colour.
- 6 ECS test wines: **inversed Cyanidin-3-gl/ Malvidin-3-gl ratio**. Contrasting most of the other wines, they were rather pink in colour.

Glycerol addition to wine

- Glycerol has a sweet taste
- It is supposed to contribute to the mouthfeeling

- Natural constituent of wine
- Glycerol 4,8-14 g/l

• Methods:


- wet chemistry, GC, HPLC
- NMR
- Small additions 15-30 % of the total glycerol difficult to detect

Glycerol addition to wine

- By-products found in technical glycerol (not naturally present in wine)
- Impurities from glycerol synthesis by fat cleavage (3-MPD)
 - or from petrochemicals (CycDs)

page 11

- 1997: 140 of 850 wine samples (mainly German) were "positive" (16 %)
- 1999: 3 of 150 were "positive
- Today: rarely found in European wines but present in 16 % of wines in ECS project
- OIV-MA-AS315-15 (OENO 11/2007) Type II

Principle OIV-MA-AS315-15 (OENO 11/2007) Type II

- The analytes (3-MPD, 6 cyclic diglycerols) and the internal standard are salted-out by addition of K₂CO₃, and extracted using diethyl ether.
- Extracts are analyzed **directly by GC-MS** on a polar column
- Detection is then carried out in selected ion monitoring mode
- Quantification is done by a matrix calibration curve

Have a look at the OIV method pdf! We will go through step by step.

Table 1. Pipetting scheme of matrix calibration

OIV-MA-AS315-15 (OENO 11/2007) Type II

Matrix calibration:

- Essential (external calibration is not sufficient)
- Wine free of the analytes is required as blank
- Standards: Internal standard Butane-1,4 -diol-1,1,2,2,3,3,4,4-(²H)₈ and 3-MPD : commercially available

Cyclic diglycerol mixture: available from BfR

Get yourself organised to manage the pipetting scheme properly

Do not pipette onto the glass joint surface

Matrix calibration level				Volume Wine	C Wine	C Wine	
		Spike	Spike µl		μg/L	mg/L	
Blank	IS	-		10	0	0	
	3-MPD	-					
	CycDs	-					
ML0	IS	100	S1	10	1000	1.00	
	3-MPD	-					
	CycDs	-					
ML1	IS	100	S1	10	1000	1.00	
	3-MPD	100	S 2		100	0.10	
	CycDs	50	S 1		500	0.50	
ML2	IS	100	S1	10	1000	1.00	
	3-MPD	25	S1		250	0.25	
	CycDs	100	S1		1000	1.00	
ML3	IS	100	S1	10	1000	1.00	
	3-MPD	50	S1		500	0.50	
	CycDs	20	S 0		2000	2.00	
ML4	IS	100	S1	10	1000	1.00	
	3-MPD	100	S1		1000	1.00	
	CycDs	30	S 0		3000	3.00	
ML5	IS	100	S1	10	1000	1.00	
	3-MPD	200	S1		2000	2.00	
	CycDs	40	S 0		4000	4.00	

Adding the salt:

Addition of K₂CO₃

Do not touch the glass joint surface

Shake to dissolve immediately (will get hot!)

Shake well (the salt will not be dissolved completely) and cool down in 20 °C water bath.

Adding the diethyl ether:

• Addition of 1000 µl of diethyl ether

Work exact (quantitative step)

Work under the fume hood

- Shake the mixture by hand or in a verticalshaking machine for 5 min
- Centrifuge.

Taking off and drying the organic phase:

• Carefully transfer the upper phase to GC vials prepared with molecular sieve

Work under the fume hood

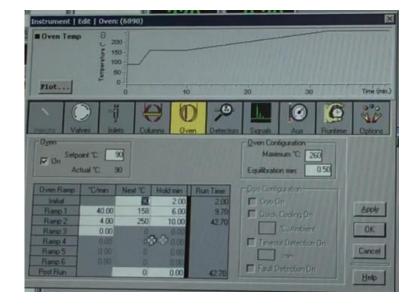
You do not need all of the upper phase (1-1.5 ml), do not disturb the water phase

Close vials immediately

- Keep in the fridge for two hours so that all water is adsorbed by the molecular sieve
- Transfer the liquid into fresh vial: ready for GC analysis

GC/MS analysis:

Typical GC conditions

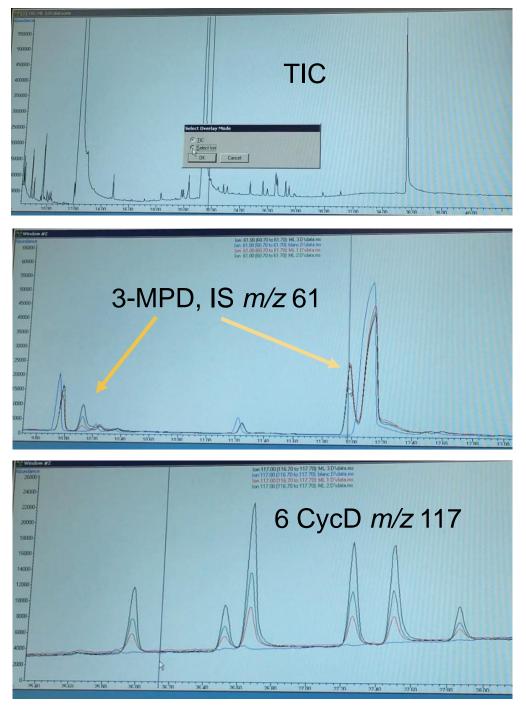

Gas chromatograph: HP 5890 or equivalent DB-Wax (J&W) column 60 m, 0.32 mm internal diameter, 0.25 µm film thickness, 2 m capillary containment same dimensions or equivalent Carrier gas: H2 ,Flow: Pressure 60 k Pa column head Temperature program: 90° C, 2 min., ramp at 10°C/min. up until 165° C, held for 6 min., ramp at 4° C/min to 250°C, held for 5 min.

Injection temperature: 250° C; Injected volume; 2 µL, splitless for 90 s.

Stated oven program and conditions are examples and need to be optimized

Selected ions: 3-MPD: *m/z* 75, *m/z*IS: *m/z* 78, *m/z*CycDs: *m/z* 57, *m/z*

Monitor also m/z 91 for the separation of the IS peak from phenylethanol, which also produces a fragment m/z 78.



Spectra inspection:

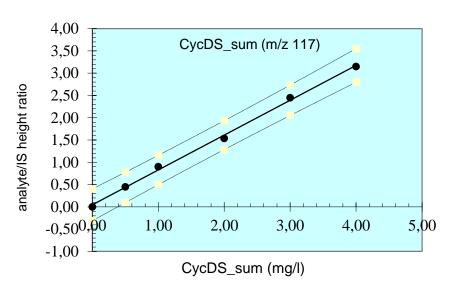
Check Total Ion Chromatogram and Selected ions

Identify signals: select relevant m/z and compare spiked samples with the blank.

Use peak height instead of area if separation of the signals is not excellent

Calculations:

• Linear regression

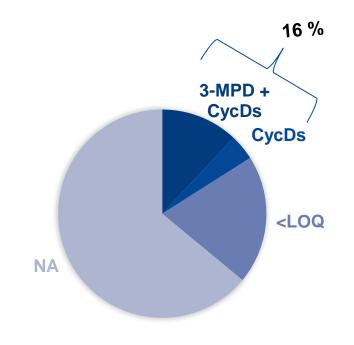

3-MPD: m/z 75 is used for quantification CycDs: m/z 117 is used for quantification \rightarrow calculate all six peaks first separately and finally the sum of all six peak heights

• Sample calculations based on the calibration function:

Calculation of the samples			further info:	Sum 1-6			
Analytical form no.		Sum 1-6					
sample	sample	X _{added}			ratio	X _{calculated}	
no.	name	mg/l	height	IS	Ana/IS	mg/l	recovery [%]
1	W06492		0	38034	0.00		#DIV/0!
2	W06492		0	35288	0.00		#DIV/0!
3	W03669		25380	33200	0.76	0.92	#DIV/0!
4	W03882		0	41153	0.00	n.d.	#WERT!
5	W03884		9658	36820	0.26	0.28	#DIV/0!
6	W03886		19516	42826	0.46	0.53	#DIV/0!
7	W04202		0	41956	0.00		#DIV/0!
8	W04725		0	30291	0.00		#DIV/0!

Example data sheet linear regression:

Data she	eet for the deter	mination of	initial matrix weight	10.0	ml		
				- J			
Analytical form no. Sum 1-6		concentration/quantity of IS:		1	mg/l		
sample.	Y	X 2				V2	V * V
no.	X _i	X _i ²				V2	X _i * V
i				Y _i (Area)			
					analyte/IS		
	mg/l		height	IS	height ratio		
ML 0	0.00	0.0	0	63674	0.00	0.0000	0.000
ML 1	0.50	0.3	16079	35772	0.45	0.2020	0.225
ML 2	1.00	1.0	32202	35764	0.90	0.8107	0.900
ML 3	2.00	4.0	59378	38648	1.54	2.3605	3.073
ML 4	3.00	9.0	95929	39189	2.45	5.9920	7.344
ML 5	4.00	16.0	110386	35069	3.15	9.9079	12.591
to	total volume of injected solution (in vial):				[µ]]		
		,		2	r (*** 1		
total number of standards (N):			6				
total number of multiple analyses:			1				
correlation coefficient r=		0.9988					
	slope:			0.7822	normalised (*IS)=	0.78	223458
y	-intercept:			0.0447			



. . .

Conclusion

- Spot check in China indicated technical glycerol addition still common adulteration
- Straightforward method for detecting the addition of external glycerol
- Conservative interpretation of very low concentrations: possible minor entry via enzyme preparations

ECS wine samples, n=50

Müller, T. M. et al. (2021). *Food additives* & *contaminants. Part A, 38*(8), 1289–1300. https://doi.org/10.1080/19440049.2021.1916097

Bundesinstitut für Risikobewertung

Thank you for your attention

Carsten Fauhl-Hassek

German Federal Institute for Risk Assessment Max-Dohrn-Straße 8-10 • 10589 Berlin, GERMANY Phone +49 30 - 184 12 - 28300 • Fax +49 30 - 184 12 – 99 0 99 bfr@bfr.bund.de • www.bfr.bund.de/en